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TEEHNICAL MEMORANDUM 1404

INVXSTIG3TION @’ APERIODIC TIME PROCESSES WITH AUTOCO-TION

AJ!lDFOURIER WSIS *

By Marie Luise Exner

SUMMARY

Autocorrelation and frequency analyses of a series of aperiodic time
l-l events, in partictir, filtered noises and si.bi~nt sounds, were made.
$ The position and band width of the frequency ranges are best obtained

from the frequency analysis, but the energies contained in the several
bands are most easily obtained from the autocorrelation function..

The mean number of zero crossings of the time function was deter-
. mined from the curvature of the latter function in the vicinity of the

zero crossing, and also with the aid of a decimal counter. The second
method was found to be more exact.

1. INTRODUCTION

For the analysis of voice sounds, practically the only method ap-,
plied up to this time has been the Fourier analysis of the time process
according to frequency. For vowels and other noises with predominantly
periodic components, the analysis of the sound is undoubtedly the most
suitable for the problem. The voiceless consonants are, however, only
slightly -periodic,and it is to be expected that the autocorrelation
analysis will give a more suitable description. Attempts of this kind
of analysis have already

The autocorrelati.on
definedby

been mde by Stevens (ref. 1).

function *(T) of a time process f(t) is

J
+T

@ (T) = lim ~ f(t) f(t~%) dt (1)
T~- 2T -T

.

*“Untersuchung unperiodischer Zeitvorg%ge mit der Autokorrelations-0
und dsr Fourieranalyse.” Acustica, Bd. 4, Nr. 3, 1954, pp. 365-379.
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where f(t~~) is the time function for an earlier and later time instant
‘c,respectively. The autocorrelation function is, thus, a simplified
form of the time function in which all phase relations are neglected,
and is related to the original time function in the same way that the
power spectrum II(V)/2 is related to the spectral function ~(v) (in
magnitude and phase).

According to Wiener, who introduced the autocorrelation function in
information theory,l the theorem, named for him, holds that the power
spectrum and the autocorrelation function of a time function form a pair
of Fourier transforms. Fundamentally, it ‘isthus not to be expected that
the autocorrelation analysis should yield more than the Fourier analysis.
However, in any individual case, the investigation of a time function
according to either method of analysis may be more advantageous.

The autocorrelation analysis offers an advantage, for example, in
the analysis of statistical processes for which only the probability
distribution is known (ref. 3). These processes are-not directly acces-
sible to the theoretical treatment with the Fourier analysis, whereas,
with the aid of the ergodic hypothesis (equality of the ensemble and time
average of a statistical process), the autocorrelation function can be
directly computed from the probability distribution. From this function
and through a Fourier transformation, the tiequency spectrum of the sta-
tistical process is obtained. This property of the autocorrelatfon func-
tion as a mediator between the probability distribution and the frequency
spectrum of a statistical noise is not applied, howeyerJ in the present
work.

,

Since the autocorrelation analysis of time functions represents a
somewhat unfamiliar mode of treatment, it appears suitable first to meas-
ure the autocorrelation functions of simple noises and compare them with
the measured Fourier spectra before we begin to analyze complex noises
(e.g., sibilant consonants). The present i-nvestigationsare correspond-
ingly divided into the following four groups:

(A) Investigations on filtered noises
.--.

(B) Investigations infrequency modulated impul;es

(C!)Investigations on a noise on which a periodi: component is
superposed

-— -.

(D) Investigation of voiceless and voiced sfbila~t and fricative
consonants

‘A review of
function is given

the properties and appli~tions of tbe
in a work hy Lee and Wiesner (ref. 2).

autocorrelation
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Several properties of the.
advance:

autocorrelation

3

function may be stated in

(a) The autocorrelation function is a symmetrical function. Its
maximum value lies at T = O, and is equal to the time-averaged-square of
the time function, that is,

*(O) = fqt) (2)
-1
n

(b) The autocorrelation function of a sine or cosine function is a
2 cosine function of equal period. The autocorrelation function of a sta-

tistical noise is an exponential function which drops more rapidly as the
noise frequencies become higher. In general, it can be stated that the
wider the frequency band of a time function the more rapidly its autocor-
relation function drops with increasing T.

(c) 13?the noise contains various periodic and aperiodic components,
e each one begins at ‘r= O with its maximum value and then, depending on
~ its frequency-bandwidth, drops more or less rapidly, independently of
a0. the other components. In this way periodic components, fcr example, can

be sifted out of an aperiodic noise. For z = 0, the ener~ contribution

fz(t) of each component can be observed.
. --

(d) The curvature of the autocorrelation functional the zero cross-
ing is connected with the mean number ~ of the zero crossings per sec-
ond of the initial function:

{3)

(see refs. 4

(e) For
function the

and 5).

the mean number of maxima and minima per second of the time
following expression applies:

2. COMPUTATION OF THE AUI!OC!ORRELATION

.-

(4)

FUNCTION OF A FIIJ3EREDNOISE

The autocorrelation function of the filtered noise can be computed
● by two different methods (refs. 3 and 5). The first method makes use of

the definition of the autocorrelation function (eq. (1)), and the second
method makes use of Wiener’s theorem.

.
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(a) The time function, which is to be correlated with itself, is
the received function of the filter if the filter is excited by a sta-
tistical noise with constant spectral amplitude (white noise). This
noise can also be regarded as a statistical, infinitely dense, sequence
of 5 impulses. When excitation of the filter by a single 5 impulse
occurs, the received function is equal to the so-called weighting function
W(t) of the filter, which is connected with its transfer function Y(V)
through a Fourier transformation —

.rm

w(t) = Y(U)ejzmt dv
-m

The autocorrelation function of the output voltage is, in this case,
according to equation (l):

(5)

(6)

It is shown (ref. 3) that equation (6) holds true not only for the exci-
.

tation of the filter by a single 5 impulse, but also,for the excitation
by a statistical sequence of 5 impulses (i.e., for noises). The auto-
correlation function of the filtered noise can thus be computed if the

*

transfer function of the filter is known.

(b) The Wiener theorem represents a relation between the autocorre-
lation function and the spectral density of a time function.

Let the time function be fT(t) in the region -T<tC+T and zero
outside this region. Then its Fourier transform, the spectral function
is

J
+40

-J2rcvtdt =
J

+T
AT(v) = fT(t)e f(t)e-J2nti dt

-w -T

The spectral density is defined as
——.

G(v) = Tly= ;kr(’)12

Wienerfs theorem states that

(7)

(8)

(9) ‘
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that 1s, the autocorrelation function and the spectral density ere con-
nected by a Fourier transformation.

The spectral
white statistical
transfer function

density of the output of a
noise of spectral density

G(u) = NIY(u) ]2

filter, whose input is a
N,

For the computation of the autocorrela.tion
noises the following scheme is thus obtained:

~y(v)l
(1) w(t) G(v)

L-@(T)_l

can be computed from the

(lo)

function of filtered

(2)

In the first case, we go from the frequency into the time plane
through Fourier transformation, and all phase relations are then elimi-
nated; in the second case, the phases are first dispensed with in the
frequency range, and than a Fourier transformation is carried out.

In the present work it is suitable to apply the first method for the
RC and LC filters, and the second method

Examples

1. RC filter

The transfer function of the RC filter
diagram (fig. 6(a)) as:

~&-the rectangular filters.

is read from the circuit

‘(v’=*=& (n)

The weighting function is then given by the Fourier transformation as

W(t) = ~ e-t/RC

According to equation (6), there is obtained for the autocorrelation
function

(12)

(13)
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or

-17\/RC ~t~_@(@ = ~* (T) = @(0)e

Similarly, there is obtained for the LC filter (fig. 7(a)),

y(v) = l/rc

(J2)Tv+a)2+p2

@(T) = @(0)e-aJTlcos j3\T~

NACA TM 1404
●

.

I

(M) -

where ~ is the natural frequency of the damped circuit and In u all
the losses of the filter are included. The autocorrelation function is
thus an exponential damped cosine function.

—.
2. Rectangular filter —

Transfer function: .

Y(v) =A for VO- 42%1+0 +Av/2

(17) ●

Y(v) = O elsewhere .-.
..

The spectral density of the filtered noise, according to equation (10)
is

..-
G(v) = NA2 in the transmission region

and (18)

G(v) = O elsewhere

According to the Wiener theorem (eq. (9)), there is obtained for the
autocorrelation function

1
vo+Av/2

*(T) = NA2
/

COS 23’WCdu
VO-AV 2

(19)

(20)
.

The autocorrelation function of the rectangular filter @ a cosine func-
tion whose amplitude does not decrease exponentially but decreases like
a slit function.

●
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For the
quency v=

7

rectangularly bounded low pass filter with the limiting fre-
there holds, with AV = 2V0 = V=

3. APPARATUS

(A) Autocorrelator

An apparatus was developed which made it possible, from a given time
function f(t), to determine the autocorrelation function according to
equation (l). The block diagram of the apparatus is shown in figure 1.

The values of the time function were recorded on an endless magnetic
tape, about 1 meter in length, which could receive speech up to 95 percent
of its length. The interval between recordings was determinedly the
distance of the erase head from the record head. The frequency-response
curve of the magnetic tape is seen in figure 2, where the ordinate has a
linear scale. This record was obtained by recording a very broad banded
noise on the magnetic tape, and analyzing the played back noise with a
wide-range spectrum analyzer (ref. 7). The response is uniform up to
about 16 kilocycles per second, and then drops rapidly. In measurements
with pure tones and for the noise investigations, the time function w
directly obtained without using a storage from the vibrating buzzer or
the noise generator.

A properly terminated lumped-constant transmission line was employed
as a delay mechanism. The characteristics of the transmission line were:
c = 48~900 micromicrofarads and L = 5.99 millihenries, from which a
characteristic impedance of Z = 350 ohms and a time delay per section
To = 17.2 microseconds, was obtained. The measured limiting frequency
was 25 kilocycles. The damping of the transmission line for 50 sections,
giving a time delay of about 850 microseconds, was 1.2 decibels at 20CKl
cycles per second, and up to 1.5 decibels for higher frequencies. In
order to equalize the frequency dependence produced by passing the signal
tibroughthe delay line, the undelayed voltage was conducted through sev-
eral sections of delay line having an eqwl impedance; in addition,
negative delays could then also be realized. At a maximum, the time
function couldbe delayedby 2.5 milliseconds andby -0.014 millisecond.

Multiplication. - Most of the multiplication procedures that have
become familiar are eliminated when the following requtiements are set:
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product should
multiplicative

be zero if a
mixture with

—.

factor become’szero (e.g., not
a hexode).

(2) A true four-quadrant multiplication should be.carried out, that
is, the”sign of the two factors sho~ld be t~en into account (not sat-
isfied in the case of all logarithmic and impulse moduktion prmesses).

(3) The multiplier should not simultaneously integrate with a fixed
time constant (not satisfied, e.g., with dynamometers, electrometers,
and thermoconverters).

(4) me frequency response of tti multiplier must-be from about 50
cycles per second to 15 kilocycles per second.

(5) Independence of the multiplication on the inpu~ voltages of t=
multiplier (not satisfied when operating in the quadratic region of tube
characteristic curves).

All the preceding requirements are satisfied, in a very simple man-
ner, by a ring modulator whose four rectifierelements have very accurate
equal characteristic curves. Elements corresponding to each other were
selected from a large number of rectifiers.2 The curve In figure 3,
which simultaneously represents the characteristic of the entire auto-
correlator, shows that the product voltage *(O) is within a wide range
proportional to “theproduct of the two (in this case equal) input voltages
fz(t). Using this measurement, the modulation of the multiplier is 30
millivolts. For larger modulation, the product @(O) Indicated is too
small. Small asymmetries of the rectifier can largely be equalizedby
reversing the poles of one of the two voltages on the multiplier, and
then taking their average. The integration was carried Out with an RC
element whose time constant could be readily varied. Generally, a time

constant RC = 50 milliseconds (R = 5k% C = 10vF) was used. In these
measurements, therefore, we s.redealing with an autacorrel.ationwith
limited integrating time (i.e., a short-time autocorrelation) (ref. 6].

.

d

.

Indicator mechanism. - The very small direct voltage deliveredby
the integrator is proportional to the autocorrelation function, and can
be directly ~easured with a very sensitive galvanometers. In order to
circumvent the inconvenient galvanometersmeasurement and make it possible
to register the measurement results automatically, the direct voltage was
broken up with a relay to the beat of the net power supply frequency.
From the resulting rectangular voltages the fundamental frequency was
filtered out with an octave band width filter. After corresponding am- - -
plification, this alternating voltage was conducted to a cathode-ray
oscillograph on whose screen, and on synchronization of the time deflec- .

tion with the supply frequency, it was possible to read the autocorrela-
tion function in magnitude and sign. Because of the greater reading

●

2The multiplier was set up by S. Vogel.
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accuracy, however, the magnitude of @ (z) was generally read on an indi-
cator instrument connected with the measuring amplifier.

Testing of Autocorrelator

1. Frequency Dependence

The frequency dependence of the entire autocorrelation apparatus
(without the storage magnetic tape) Is shown in figure 4. The response
is flat up to about 10 kilocycles per second. The waviness at the higher
frequencies is due to the delay circuits, whose wave resistance is no
longer constant in the neighborhood of the limiting frequency.

2. Autocorrelation of a Sine Oscillation

The continuous curve h figure 5 shows the computed autocorrelstion
function of a sine oscillation of 1940 cycles per second; the points shown
are the measured values. The agreement for small T is very goodj for
large z the damping of the delay circuit becomes a.ppeciable, for which
however, a correction can be made if the measured values are plotted on
B logarithmic scale.

.

3. Autocorrel.ationof a Periodically Interrupted Time Function

Since for all speech imestigations the time function was periodi-
cally interrupted because of the gaps on the magnetic tape, it was ascer-
tained, with the aid of a sine function impressed on the tape, that the
apparatus also operated reliably in this.case.

(B) SOUND ANALY2ER

For the sound analysis, the wide-range spectrum analyzer of Tsmm and
Pritschhg (ref. 7) was applied. It contained a mechanical fflter of 15
cycles per second bandwidth and a very sharp cutoff. The analysie time
amounted to 150 seconds for the frequency range of O to 20 kilocylces per
second.

(C) DECIMKL COUNTER

.

To determine the zero crossings of the time functions, an electronic
decimal counter was employed.3 In this apparatus, for each zero crossing
of the input voltage, an impulse is released by a trigger and is counted

-.

3Devebped in the III. Physical Institute of the University of
@5ttingenby H. Eenze.
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in the usual manner by
count about 2x106 zero

NACA ’1341404
*

the multivibrator principle. The apparatus can
crossings per second in a uniform sertes of cross-

.

ings and, therefore, possesses-a time-resolving lymer of 0.5xI.o-6second.
This resolving power is also sufficient to take care of the irregular
sequence of zero crossings of a statistical noise exactly, providing a
frequency range of 20 kilocycles per second is not essentially exceeded.

In statistical processes, the measured number of zero crossings is
somewhat dependent on the input voltage of the counter. H the maximum
between two neighboring crossings is so small that the trigger does not
respond, only one impulse is released. On the other hand, for very large

~

input voltages, the counter can be blocked for a short time so that too
few zero crossings are indicated. For these reasons, in the case of each
noise, the dependence of the number of crossings on the input voltage of
the counter was measured, and the measurements were considered reliable
only if the indication remained constant over a large range of input
voltage.

(A) FIUTEREDNOISE

As a noise source, a wide band amplifier (Rohde and Schwsrz), which
.

supplied a uniform noise extending far above 20 kilocycles per second,
was employed.

Two groups of filters are distinguished: (1) the usual RC and I12
filters and (2) the so-called “ideal filter” whose pass band is limited
(e.g., octave, one-third octave, and low-pass filters). In the case of
the rectangular filters, the envelope of the autocorrelation function has
the form of a slit function sin a~/az, whereas in the case of the W
filters, it is an exponential function.

—.
For each noise the following measurements were carried out:

(a) Measurement of the frequency response of the filter with pure
tones

(P~p~~;fi:~~:is of the filtered noise with the wide-range—

(T) Autocorrel-ationanalysis of the filtered noise

(5) Determination of the average number of zero crossings per
second of the time function with the decimal counter



,
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1. Noises over RC Filter

From figure 6(a),

Rs16kQ

c = 4.5x10-9 F

RC = 72x10-6 s

Spectrum curve of the noise:

‘Ew= l/21cRc= 2210 Cps

Autocorrelation function:

*(T) =@(0)e - j’cl/RC

Measurements:

11

(a), (13)The filter response curves determined with pure tones and
the spectral analysis of the filtered noise, give a l.biting frequency
Of 222o cycles per second. At higher frequencies up to 25 kilocycles
per second, there occurs the normal drop with I/v, while still higher
frequencies are completely cut off by the delay circuit.

(r) In fi~e 6 the measured autocorrelation curve is shown for
linear and logarithmic scale. It is essentially an exponential function
with a time constant RC = 80 microseconds. This value corresponds to a
limiting frequency of 2000 cycles ~er second.;the deviation from the
theoretical value thus amounts to about 10 percent. The reason for the
flattening of the autocorrelation function at % = O is that the f&e-
quencies above 25 kilocycles per second are entirely absent (see (a)).
From the cticle of curvature at the zero crossing there is obtained, for
the average nuniierof zero crossings, according to equation (3), a value

of 8.5x103 sec-~. This number is very uncertain, since the measurements
could not be csrried out for a sufficiently small value of T.

(5) The counter measurement gave a value of 6.2xl@ see-l for the
average num”er of zero crossings.

Measurement results on additional RC filters4
embraced a range of 1:50 sre presented in table I.

4The author wishes to thank P. D&mnig for his
the RC filter measurements.

whose time constants

help in carrying out
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Results:

A noise that
analyzed with the

NACA TM 1404
s

.

has passed through an RC filter can be conveniently
autocorrelator. The time constant RC of the filter

is, with the given apparatus, determined to about 10 percent error. It
is important, however, that no phase shifts occur between the filter and
the ~dtiplierj otherwise, the autocorrelation curve is falsified. A
cutting off of the high frequencies between the filter and the multiplier
evidences itself in the flattening of the autocorrelation curve at the
point T = 0, rather than possessing a

2. Noise Tbrough LC Filter (fig. 7(a))

L = 4.9 henrie8

finite slope at this point.

with Various Amounts of Damping

c = 630 micromicrofarads

‘o = 2865 cycles per second

The loss factor of the coil was very small (~L=~/2iTV&= 0.06).

The loss factor of the condenser was varied by parallel connecting of
.

resistances Rp (not = @p2fioc = 0.22; 0.44; and 1.10). The frequency

curve or the noise is .

IA(v)l = 1

[1 - (2XV)% -t-R## -1-(2&Lc(~L + ?lW)z

—

and possesses, as is obtained through differentiation, a maximum at Vr)
the resonance frequency of the filter:

,2? ‘Vo 4- i (& +&)
The autocorrelation function is

@(T) = @(0)e-a~~cos ~[~1

where

,

.
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B = 2fivf is the angular frequency of the free damped oscillations of the
. filter.- The frequency

‘f=vuFm=17
agrees with the resonance frequency Vr only in the
damping.

case of very small

5j For the average number of zero crossings per second of the filtered
+ noise there is obtained, according to eqpation (3)

r

-@%) = ~v
n=-

:Tr

Measurements:

w = 0.22

The over-all loss factor of the filter is

%
=0.22 +0.06 = 0.28

(a) From the filter response curve measured.with pure tones (fig.
7(a)) there is obtained a resonance frequency Vr = 2820 cycles per sec-
ond (theoreticalvalue 2820 CQS), =d a half-value width AV = 870 cycles
per second. The measured loss factor is thus ~ = 0.30.

(B] The spectrum (fig. 7(b)) of the filtered noise shcm the same
pidurej however, the resonance frequency and the W-value width cannot
be read with the same accuracy as in the filter measurement with pure
tones.

(T) mom the masured autocorrel-ationfunction (fig. 7(c)) there”is
obtained a frequency of 2740 cycles per second (theoreticalvalue 2850
cps), and a damping q = in@(0)/(fi ln~- 1) = 0.28 (theoreticalvalue

likewise ~ = 0.28). The damping Or the transmission line is taken into
account. The determination of the zero crossings of the time function
from the radius of curvature of the autocorrelS.tionfunction at ‘r = O
is very inaccurate. There is obtained a~prcucimately n = 40CX3see-l.*

(5) The determination of the number of zero crossings per second tith
. the decimal counter gave n = 5050~0, or expressed as a frequency,

v = 2525430 cycles per second (theoreticalvalue, 2820 CPS).

,,
, ...’
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Measurements for another loss factor of the IC filter are presented 1

In figure 8. It is clearly seen in what manner the spectrum curve and .

the autocorrelation curve depend on each other. The wider the frequency
curve, the more damped is the autocorrelationfunction.

Table II lists all the experimental results that were obtained with
W filters of different damping and serves for quantitativelycomparing
the individual measuring methods. This table also shows that the natural
frequency and dmping of IC filters maybe determined with the given
autocorrelator within about X5-percent error. Only for the most strongly
damped filter, TIou 1.2, do larger deviations occur. This was found to E

P
be true for all filters whose frequency range reaches to very low fre-
quencies and is evidently due to the phase shifts within the amplifier
at very low frequencies.

3. Noise Through Rectangular Filter

Frequency response curve of the filter:

Y(,v)WA for V. - AV[2<V~Vo +Av~2

and

Y(v) = O elsewhere

H N is the constant spectral density of the noise, then

G(v) = NIY(0))2 = NA2 for V. - AV/2<V<Vo +Av/2

G(v) = O elsewhere }

The autocorrelation function, according to equation {20), is

The

(a}

(b)

(c)

following

NA2
R(’T)== cos 2JCVOTsin tiv~

three filters were investigated:

Octave filter vo = 4800 cps, AV = 3200 cps

One-third octave filter VO = 2%0 CpS, Av= 700 CpS

Low pass filter V= R 2V0 = & = 16 kcps

b

.

,

G
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(a) Noise through octave filter

(a) Figure 9(a) shows the frequency response curve of the filter
measured with sine tones. To determine the half-value frequencies 6305
and 3100 cycles per second, the decimal counter was used as a frequency
meter. There was obtained vo = 4702 cycles per second and Av = 3205
cycles -persecond.

(~) The spectral analysis of the noise is shown in figure 9(b).
The frequency response cwve of the filter is also well reproduced in
this manner.

(T) me continuous curve in figure 9(c) is compuked from formula
(20) for VO = 4800 cycles per second and Au= 3200 cycles per second.

The measured points (the crosses indicate -’c and the circles indicate
w) sgree quite well with the computed curve. As a measure for the damping
of the autocorrelstion curve, the ratio of the first maximum to the first
minimum maybe used. For an octave filter, there is theoretically
obtained ~(0)@tin = 1.2j the measured valw was ~(o}~~~n = 1.3. Worn

the r-us of curvature at the zero crossing, there is computed a mean
number of zero crossings of 10.8x103 sec-~, corresponding to a frequency
of 5400 cycles per second. The determination of the radius of curvature
is not very ~curate, however.

(5) The counting of the zero crossings with the decimal counter gave
n = (10.0&0.2)x103j that is, v = 5.@O.l kilocycles per second. The
comparison with the theoretically predicted value

n=2m=g08x10’se-
shows good agreement.

(b) Noise through one-third octave filter

[

a),(p) The response and spectrw for the one-third-octave filter
show figs. 10(a) and (b)) that although the cutoff of the filter was
sharp, its top was rounded. With the decimal counter the frequencies
of the half-value points were determined as 3230 and 2500 cycles
per second. I?Yomthis there is obtained a mean frequency VO = 2865

cycles per second, and a band width AU = 730 cycles per second (theoret-
ical values 2850 and 700 cps).

(T) me continuous cucve in figure 10(c) represents the measured
autocorrelstion curve. It drops somewhat more rapidly than the ideal
computed autocorrelation function for a rectangular filter in figure
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10 a), the maxima and minti of which are plotted as crosses in fi e
T10 c) {the damping of the transmission line was tsken into account .

For comparison, the extreme values of the autocorrelation curves for a
resonance circuit of equal mean frequency and half-value width are in-
dicatedby triangles. The curve drops conslderablym~re rapidly than
the measured autocorrelation function of the third filter.

(5) With the decimal counter, a mean mniber of zero crossings of
n a 5690~0 sec-~ was measured; this corresponds to a frequency of
2845A15 cycles per second. If the values measured under (a] of
V. = 2865 cycles per second and AU = 7’30 cycles per second are used as

a basis, then the expected value is n s 5.80X103”see-l. Therefore, the
agreement is good.

(c) Noise over low pass

Autocorrelation function:
A2

*(T) == sin 2nv@z

As a low pass filter there was used the storage magnetic tape, whose
response curve at 16 kilocycles per second drops with considerable

.

steepness (see fig. 2).

(T) The continuous curve in figure 11 is the computed autocorrela- .
tion function for a low pass filter with a limiting frequency of 16
kilocycles per second, with which the measured points, plotted as c.trcles,
show quite good agreement.

(5] For the number of zero crossings the measurement with the
gave n = 18x103 see-l. The expected theoretical value would be
n m 1.155 Vw = 18.5x103 see-l, a value that agrees very well with
measured value.

4. Cross Correlation

Whereas the awtocorrelation of a filtered noise, according to

counter

the

equa-
tion (6), gives the simplified weighting function of-the filte~ (without
considering the phases), the weighting function itself is obtained if a
cross correlation of the output voltage of the filter with its input
voltage is taken. The cross correlation makes higher demands on the
apparatus since it requires two accurately equal amplifiers whose phase
shift also remains small for low frequencies.

Cross-correlation curves for an RC!filter (RC x 0.9x10-3 see] and–.
for an U filter (vr - 1500 cps] are shown in figures 12 and 13. In

*

contrast to the autocorrektion curves, which always st&rt with their
maximum value, the cross-correlation curves start with zero and, in .
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addition to the decay process, also show the starting oscillations of
the filter.

(B) POSITION MODULATED ~ESEQUENC!E

As an exsmple of a process very rich in overtones, @uMe sequences
were investigated. The impulses were taken from the decimal counter and
could be released either periodically (through a sine voltage], or in an
irregular sequence (throughwabbling or noise voltage). Figure 14 shows
the form of the @ties at the inlet of the multi~li.er;they could not
be made arbitrarily narrow because the transmission line limited the
frequency range at 25 kilocycles per second.

The effects which the seqy.enceof the hpulses has on the autocor-
rel.ationfunction and on the Fourier spectrm sre shown by the measwe-
ments presented in figures M and 16, respectively.

In (a), the hpulses sre released by a sine voltage of 1425 c les
per second (i.e., purely periodic]. rThe sound analysis (fig. 16(a ),
gives a spectra of discrete partial tones, and the overtones of the
impulse give a sequence of frequencies vi. The autocorrelation function

{fig. 15(a]), consists of individual jags which repeat periodically sfter
the disphcement time T = l~vi. The decrease in size of the jags with

increasing z is a measure of the accuracy with which the seq=nce of
impulse frequencies is controlled. In regular seqpences of impuhes all
the peaks should be of equal height; the decrease of the maxhnm in
figure 15(a) is due to the dsmping of the transmission line. A compm?ison
with figure 14 shows that the autocorrelation function has very great
similarity to the time function.

In the releasing of the i?qmlses through a wabble tone {1400d30 CPS),
the autocorrelation function changes very little; the jags decrease some-
what more rapidly with increasing T c

T
sred with those shown in figure

15(a]. The spectral analysis (fig. 16(b] also contains the uneven
partial tones which are drawn into nsrrow tieqy.encybands.

If the impulses are released through a statistical process (using a
noise-band width of Av/v = 0.6 so adjusted that the mean frequency of
the hqnil.sesequence was about 1380 CPS), the Jags of hi@er order in the
autocorrel.ationfunction (fig. I-5{b))ydisappesr. From about T = 400
microseconds on, q(~) E O. The spectral analysis figure 16(c) shows
(in place of the discrete pez%ial tones), a wide continuous frequency
band stsrting at about the mean frequency of the impulse sequence and

decreasing very slowly after higher frequencies.
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In summsry, it maybe said, in regsrd to the autocorrelatlon function
of impulse sequences, that the decrease of the autocorrelation function .

at z I=O is determined by the content of the time function in high
frequencies independently of the circumstance, whether it is a question
of discrete overtones or wide frequency bands. In o!bderto determine
whether the the function is for a periodic or an apertodic process, the
autocorrelation function must be investigated q? to relatively large
values of ~. Only if the autocorrelation function remains continually
zero from a definite value of z onwsrd ‘Qoesthe the function correspond
to an aperiodic process.

E
w

(C) ~~~~~OS~ION~AP~IODIC~N

APERIODIC TIME PROCESS

Since, in the case of language sounds, for example, voiced consonants,
we are frequently dealing with a s~erposition of two or more ttie
processes, it willbe shown in a further”tiodeltest, how the Individual
components can be separated with the aid of the autocorrelation analysis.

.

The simplest and clearest case is that of the additive superposition
of a pure sine tone fs(t) with a wide band noise fr(t]. The autocorre-

la.tionfunction in this case is (ref. 2)
.

away becaus=the cross
The autocorrelation of

The two terms with mixed indices drop
of two incoherent processes is zero.
two incoherent.processes is, .thus,equal-to the sw of their
lation functions. For the particular case % = O, we have

.-
—.

““2
@(O) = @ss(0) + @rr(0) = ‘~(t) + ‘r(t)

correlation
the sum of
autocome-

that is, for % = 0, it is possible to obtain the square mean of the time
functions from the autocorrelation diagrsm.

As an example, figures 17(a) and (b) show the frequency spectrum
and the autocorrehtion function of a mixture of iioise,and a sine ton6
of about 4 kilocycles per second. Both noises were so adjusted that they
each produced the ssme deflection on a.tube voltmeter with linesr recti-
fication. According to Beranek (ref. 8), the mean ”sqparevalues are then

. .
—.

●

✎
in the ratio

——

f:(t)/f:(t) = 1.3
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From the s.utocorrelation diagrem, there
ratio

%(0) f?(t) 74

19

can immediately be read the energy

~EL~)

In order to compute the sine and noise components of the frequency
spectrum, the filter width of the sound analyzer and the band width of
the noise must be known;in the case considered they are 15 cycles per
second and 16 kilocycles per second, respectively. From figure 17(a)
there is then obtained

——

fg(t)/fg(t) = 1.5

In a second measurement, in which the energy of the sine tone was only
one-fourth of the energy of the noise, the following values were obtained
for the ratio of the two energies: theoretical value, 5.0; atiocorrela-
tion analysis, 4.8j and sound analysis, also 4,8. me accuracy of the
measurement is about equal for both processes.

In the case of voiceless consonants we have to deal not with the
superposition of a pure sine tone and a very broad banded noise, but
frequently with the superposition of two reWtive3y nerrow but continuous
frequency bands. As an example, the results are given for the voiceless
“s”, whose spectral anal~is is shown in figure 18(a], and whose auto-
correlation function is shown in figure 18(b). ~ it is desired to
determine, from the frequency spectrwn, what part of the total energy
corresponds to the small peak at 7 kilocycles per second and what part
of the total energy corresponds to the broad frequency range at 9 kilo-
cycles per second, the areas under these ~eaks must be measured with an
integrating planimeter. This measurement, which was csrried out with
an enlargement of figure 18(a), gave, for the ratio of the energies,

‘9kcps/N7 kcps =6.2.

The separation of the two autocorrehtion functions can easily be
effected if the maxima and minima of the measured autocorrelation func-
tion is plottedto logarithmic scale (fig. 18(c)). In spite of the
lsrge scatter of the measured values, two straight lines which character-
ize the exponential decrease of the two oscillations can easily be drawn.
The steep Une corresponds to the broad frequency band, and the line with
smaller slope corresponds to the narrow band. From the yoints of inter-
section of the straight lines with the axis of ordinates there is read.,
for the ratio of the energy of the two peaks at 9 kilocycles per second
to that of the narrow peak at 7 kilocycles yer second:

m= ‘“~~”s = 5“3
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The agreement of the two values is satisfactory in view of the fact that
the planimeter measurement is not very accurate.

(D) VOICED AND VOICELESS SIBIIANT SOUNDS

Voiceless sibilant sounds consist of more or less broad, continuous
frequency bands whose shapes depend considerably on the position of the
mouth in uttering them. If, for example, the mouth is in the position
for pronouncing u while the sibilant is uttered, the latter will gen-
erally contain only a single, relatively narrow frequency range.

Voiced sibilants have essentially the sane frequency spectrum as
the corresponding voiceless sounds except that there is, in addition,
the much more energy rich, purely periodic voice tone.

According to Meyer-Eppler (ref. 9), there is defined, as a measure
of the degree of voicing S of a sound, the ratio

where @p(0) is the autocorrelation function of the periodic component

and *(O) that of the total sound, both taken for T=().

The sibilant investigated was recorded on an endless recording loop
of about 1 meter length in such manner that it filled out the tape except
for the unavoidable gap of 5 percent of the tape length. To determine
the nuriberof zero crossings with the counter, the gap of the recording
was taken into account by counting over a longer time, measured with a
stop ‘watch (about 10 cycles of the loop) and then multiplying the in-
dicated nuriberof zero crossings by the factor 1.05.

In the following paragraph one example of the large number of meas-
urements for each of the investigated sibilants (table 111) will be dfs-
cussed. Further, an attempt willbe made to dtstin@sh the character-
istic properties of the individual sounds.

Voiceless Sibilants

1. Voiceless “sh”

.

.

.

.

(a] The spectral amlyis (fig. 19(a)), gives a continuous spectrum
withoti discrete lines. It possesses two preferred freqyency ranges, a
high, relatively narrow peak at 5.3 kilocycles per second (half-value

.

width about 300 cps), and a smaller peak at 1.2 kilocycles per second.
.
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(j3) The autocorrelation curve (fig. 19(b)), has the form of a damped
. cosine oscillation. From the distance of the ftrst sti maxima there is

obtained a period Z = 185 microseconds, corresponding to a frequency of
5.4 kilocycles per second (sound analysis 5.3 kcps). On the fundsnental
period is superposed a small secondary -periodwhose value is obtained
from figure 19(b) as about 740 microseconds (1.3 kcps). It corresponds
to the small peak at l kilocycle per second in figure 19(a). To deter-
mine the half-value width of the fundamental period, the extreme values
of the autocorrelation function were logarithmically plotted in figure
19(C). In spite of the considerable scatter of the measuring points
(caused by the superposed secondsry period), it can be seen that the
points lie apprwtiately on a straight line, and hence, that the auto-
correlation function decreases exponentially and not according to the
slit function sin a~/a%. From this, it canbe concluded that the reso-
nator formed by the mouth cavity in speaking the “sh” sound has the
properties of a simple mass-spring system, and is not a filter with rec-
tangularly limited frequency range. The half-width value of the resonator
is computed from the drop of the autocorrelation function, with account
taken of the losses of the transmission line and is foundto be 360

~cycles per second (spectral analysis 300 cps . The point 4(% = 0) lies
. uniquely above the straight line which is passed through the remaining

measuring points. This fact indicates that, in addition to the preferred
frequency ranges of 1.2 and 5.4 kilocycles per second, there exists a

●

further wide noise background whose autocorrelation function drops off
so rapidly that it has no effect on the remaining measuring points. In
this noise background, which can also%e seen on the frequency diagram
(fig. 19(a)), there is contained, as can immediately be read from the
autocorrelation diagram, about 35 percent of the total ener~ of the
sibilant sound.

.

(Y) In the mmwement with the decimal counter, there waa obtained
a mean number of zero crossings of 9.8x103 see-l, corresponding to a
central frequency of 4.9 kilocycles per second. This value lies about
8 percent lower than was expected accordingto measure~nts (u) and (~).

Measurements of other “sh” sounds, some of which were spokenby one
person for various positions of the mouth and some by seven different
persons, showed the following cormnonproperties that appear to be char-
acteristic for the “sh” sound. The frequency spectrum often possesses
two preferred frequency ranges each having a width of 500 cycles per sec-
ond. The upper region generally lies between 5 and 6 kilocycles per sec-
ond, the lower region between 1 and 3 kilocycles per second. Since, in
uttering the “sh” sound, two cavities are formed by the position of the
tongue, we are possibly dealing with the resonances of these two cavities.

2. Voiceless “s”

. The investigations on a voiceless “s” sound (figs. 18[a), (b), and
(c)), have already been discussed in the preceding section. Hence, only
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the values obtained for the central frequencies and damping of the two
preferred frequency ranges, according to-the different methods, ae .

collected here:

(a) Spectral analysis:

(P)

‘1 = 7.0 kcps

‘2 = 8.8 kcps

AV1/V ~ = 200 Cps

Amz/vz = 1500 Cps

Autocorrel.ation:

‘1 = 7.4 kcps

‘2 = 8.7 kcps

%b 1 = 160 CPS

●

%@ 2 = 2000 Cps

‘2 was computed from the distance of the first maximum of the autocorre-
lation diagram, and VI was computed from the distance of the last of
the 19 measured maximR {in fig. 18(b), only the first eight periods sre
drawn in).

(T) Counter measurement: The counter, naturally, does not distinguish

between the two frequencies. There were counted 18x103 see-L zero cross-
ings per second corresponding to a central frequency of 9 kilocycles per
second. Measurements a, B, and T are, therefore, particularly as
regards the frequencies, in good agreement with each other.

Almost all “s’’-spectra(spokenby seven different speakers) have
the common characteristic that frequencies below 5 and above 10 to 12
kilocycles per second, are completely absent. Between 5 and 10 kilocycles
per second there is a sharply limited, very strong cleft frequency band
which evidently consists of several relatively narrow frequency bands.-
In agreement with this, the autocorrelation diagram of “s” sounds gen-
erally has a relatively undamped character.

.

5The differences mentioned in section 4(A) of the characteristic
frequency measured with the sound analysis and with the autocorrelation

-

analysis, is not taken into account here.
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3. Voiceless “ff’

(a) The sound analysis (fig. 20(a)) gives a very broad continuous
spectrum which practically fills the entire investigated fieq.uencyrange
(Up to 16 kcps). Individual, very narrow peaks project somewhat from
the noise band.

(P) The autocorrelation function (fig. 20(b) shows a section from

o-lxlo-~ see) is unusually strongly damped. At the second maximum
(T f= 86 w sec , the autocorrelation function amounts to only 10 percent
of the value of *(O). For z>1OO microseconds, the autocorrelation
fUnctiOn is a very weakly damped, somewhat irregular cosine function
whose period correspondsto a frequency of about 11 kilocycles per second.
The waviness is not completely damped even at ‘c= 2(NO microseconds.
The jag of the spectrum to which this very undamped oscillation corre-
sponds could not be explained. The logarithmic representation of the
measured autocorrelation function showed that, in this ~riodic component
only, about 8 percent of the total ener~ is contained.

(T) Counter measurement: The mean number of the zero crossings
amounted to 19.6x103 per second, that is, the frequency center of gravity
lay at about 10 kilocycles per second.

●

Characteristic of all investigated “f” sounds (seven different
speakers) was the wide frequency band and the rapid drop of the autocor-
relation function. T!hroughsuitable mouth position it was possible to
stress individual frequency ranges, but the proportion of the total ener~
in the wide band was seldom below 75 percent.

Voiced Sibilant Smnds

4. The “zh” Sound (Voiced “sh’ras inlRrench “journal”)

(a) The spectrum of the voiced “zh” sound (fig. 21(a)) consists of
a continuous part which is equal to the spectrw of the corresponding
voiceless “sh” sound and the discrete lines of voice tone and its over-
tones. (The amplitude of the vocal tone is much eater than that of
the noise component so that the spectrum, fig. F21 a), hadto be plotted”
to logarithmic scale.) The voice tone lies accurately at 390 cycles per
second (determinedwith the decimal counter), the preferred frequency
ranges of the noise component at 2.5 and 6 kilocycles per second.

(P) Figure 21(b), represents the measured autocorrelation function,‘“
● which is additively ccmposed of three curves. In a simple manner, there

can be split off a cosine curve of the period z = 26 microseconds
(v = 382 cps), which correspondsto the voice-tone (~s(z) in fig. 21(b)).

- The rest of the autocorrelation curve (fig. 21(b)) splits into a periodic
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part with % = 162 microseconds (6.2 kcps) and a noise part. The total
energy is distributed, as is read from figure 21(b), as follows: voice

.

tone, 73 percent; frequency band at 6 kilocycles per second, 5 percent;
and noise part, 22 percent. The degree of voicingl.s

~=m”o.es
(y) The determination of the zero crossings with the decimal counter,

as in the case of all voiced sounds, is impossible here because the rel-
atively small noise component, along with the strong voice tone, cannot
be reliably determined.

5. Voiced “s”

(a) The sound analysis (fig. 22(a))
discrete lines d the voice tone and its
very similar to that of a voiceless “s”.
lies at 9 kilocycles per second, and has
kilocycles per second. The frequency of

also shows, in addition to the
overtones, a continuous spectrum
The preferred frequency range
a half’-vsluewidth of about 1.6
the voice tone, determined with

the decimal-counter,was 350 cycles per second.

(B) The autocorrelation curve (fig. 22(b)) can very easily he split
into two curves. The curve with-the longer period, 3100 microseconds
(322 cps), corresponds to the voice tone, whereas the other curve repre-

%

sents a damped cosine function of the period ‘c= 115 microseconds (8.7
kcps). The frequency bandwidth computed from this oscilktion is 1.5
kilocycles per second. The data of the two oscillations, computed from
the autocomelation function, thus agree very well with the results of
the sound analysis. The degree of voicing of the sound can be read most
simply from the autocorrelation curve

S=m=o.ao
6. Voiced “v”

(a) The spectrum contains a very strong discrete line at 335 cycles
per second (fig. 23(a)). The noise component is a very weak noise band
that extends over the entire frequency range of’the apparatus.

(13)The measured autocarrelation curve (fig. 23(b)) shows the same
result, The voice tone has a period %= 3200 microseconds (310 cps),
and contains 96 percent of the total energy. It is super~sedby a very
strongly damped cosine vibration whose period is about r = 70 micro-
seconds (14 kcps).

.
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Degree of voicing:.

s =

Short

~~i = 0.98

Sibilant Sounds

In addition to sibilant sounds, which were held for sometime, briefly
uttered voiceless sibilant sounds were also investigated.J The autocor-

~ relation curves showed
+ longer uttered sounds.
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R, c, Rc RC l?,
ohms Farads theoretical, FautooorrelatIon, CB

sec sec

80 lwo-g 1.44xlo-3 1.2xlo-3 no
50 18 .90 .8 in
30 18 .541 .5 395
15 18 ●V .3 590
15 6 .090 .086 1770
16 4.5 .072 .080 2210
15 1.9 .029 .034 5500

TABLE II

a Percent b Percent a Percent
(a)

Remmsnoefrequency:
Coqputed 2820 2715 1810
&cm filtermeasurement 2820 0 2510 7.5 (b)
Fromcountermeasurement2525 10 2305 16 2080 S

Frecfuenoyoffree
osclllst%on,~/2m
Computed 2850 2s10 2440
Fromautocorreletion
curve 2740 4 %60 13 1450 40

Lassfactor:
C-ted 0.28 0.50 1.2
From filtermeaswement .30 7 .44 3-2 (b)
From autocorrel.stion
cuve .28 0 .42 16 2.0 70

.—
“The percentages give the deviationsof the meaauredvaluesfrom the

computedvalue.
b~e we j.sso str~~ damped that neitherthe resonancefrequency~

the half-valuewidth couldbe obtainedfrom it. The meaauredvalues>however>
agreewell with the computedourve (fig,8(a)).

TABLE III

IJBT W lXVX3TIWTED SIBIMNT6 (MD FRICATIVE)

~
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Figure1. - Blockdiagramof autocorrelator.

F@re 2. - Frequenoy curve of storage magnetic tape.

o

.

Figure 3. - Characteristic curve of over-all ,
autoaorrelation apparatus.
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(a) Autocorrelation function in linear scale.
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(b) Autocorrelation function inlogaritbmic

Figure 6. - Noise through RC filter.
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Figure~. - NoisethroughL& filtem (&/v. = 0.28).
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(b) Spectrumof filterednoise.

(c) Autoccrrelationfunction;— computesfrom figure 9(a);
o 0 0 measuredfor + T; xxx measuredfor -T .

Figure 9. - Noise throughrectangularfIlter of octavewidth.
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(c)Autocorrelationanalysis;xx computedfor rectangular
filter;M oomputedforrexmanoe oircleof equalfrequency
width;o 0 0 maa~ed (dampingof delkycircuittakeninto
acoount).

Figure10. - Noisethroughreotangulsrfilterof one-third-
octavebandwidth.
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Figure 12. - Cross correlation between the input and
output voltage of anRC filter (RC = 0.9x10-3 see).
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Figure 13. - Cross correlation b.etween the inuut and
&tPut voltage of an LC filter (vr= 1500 cps).
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(b) Release of impulses through wabble tone.

(c) Release of impulses through noise voltage.

Figure 16. - Sound analysis of sequences of impulses.
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Figure 1’7.- Sine tone with superposed noise.
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Figure18. - Analysisof a timefunctionconsisting
of twonarrowfrequencybands(volcelees“sn).
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(c) Extreme Values of autooorrelation function in logerihmia soale.

Yigure 19. - Voiceless“eh.”
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Figure 20. - Voiceless “f.”
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Voice tone
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(a) Spectrum (logarithmicscale].
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(b) Above: measured autocorrelationcurve.
Below: autocorrelationfunction@G of noise
component (componentof voice tone removed).

Figure 21. - Voiced “~h” (“~” in~ench “j~o”)c
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(a) Spectrum (logarithmicscale).
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(b) Above: measured autocorrelationcurve.
Below: autocorrelationcurve of noise component.

Figure 22. - voiced “s” (“z”).
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Figure 23. - Voiced “f” (“v”).
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